1. If sin30∘=?
a) 1
b) 0
c) 1/2
d) √3/2
Answer: c) 1/2
Explanation: Standard value, sin30∘=1/2.
2. Value of cos60∘ is:
a) 1/2
b) √3/2
c) 1
d) 0
Answer: a) 1/2
Explanation: cos60∘=1/2.
3. tan45∘=?
a) 1
b) 0
c) √3
d) 1/√3
Answer: a) 1
Explanation: From trigonometric table, tan45∘=1.
4. If sin2 θ+cos2 θ=?
a) 0
b) 1
c) 2
d) Depends on θ
Answer: b) 1
Explanation: Fundamental Pythagorean identity.
5. Value of tan300:
a) 1/√3
b) √3/2
c) √3
d) 1
Answer: a) 1/√3
Explanation: Standard value, tan30∘=1/”√” 3.
6. If secθ=5/4, then cosθ=?
a) 4/5
b) 5/4
c) 3/5
d) None
Answer: a) 4/5
Explanation: Reciprocal relation, cosθ=1/secθ=4/5.
7. cot60∘=?
a) √3
b) 1/√3
c) 1
d) 0
Answer: b) 1/√3
Explanation: cotθ=1/tanθ, so cot60∘=1/”√” 3.
8. If sinθ=3/5, then cosθ=?
a) 4/5
b) 5/4
c) √7/5
d) None
Answer: a) 4/5
Explanation: By Pythagoras:
cosθ=”√”(1-sin2 θ)=”√”(1-(9/25))=”√”(16/25)=4/5.
9. Value of sin900:
a) 1
b) 0
c) √3/2
d) 1/2
Answer: a) 1
Explanation: Standard table value.
10. If tanθ=1, then θ=?
a) 30°
b) 45°
c) 60°
d) 90°
Answer: b) 45°
Explanation: From standard values, tan45°=1.
11. csc30∘=?
a) 2
b) √3/2
c) √3
d) 1
Answer: a) 2
Explanation: cscθ=1/sinθ, so csc30∘=1/(1/2)=2.
12. If cosθ=0, then θ=?
a) 0°
b) 30°
c) 90°
d) 180°
Answer: c) 90°
Explanation: At 90°, cosine vanishes.
13. Value of sin45∘ :
a) 1/√2
b) √2/2
c) Both a and b
d) 1
Answer: c) Both a and b
Explanation: sin45∘=1/”√” 2=”√” 2/2.
14. If cosθ=12/13, find sinθ.
a) 5/13
b) 12/13
c) 13/5
d) None
Answer: a) 5/13
Explanation:
sin2 θ=1-cos2 θ=1-(144/169)=25/169,
sinθ=5/13.
15. sec60∘=?
a) 2
b) 1
c) √3/2
d) 1/2
Answer: a) 2
Explanation: sec60∘=1/cos60∘=1/(1/2)=2.
16. If sinθ=4/5, then tanθ=?
a) 3/4
b) 4/3
c) 5/3
d) 5/4
Answer: b) 4/3
Explanation:
cosθ=”√”(1-16/25)=3/5,
tanθ=(4/5)/(3/5)=4/3.
17. Value of cot45∘ :
a) 1
b) 0
c) √3
d) 1/√3
Answer: a) 1
Explanation: Reciprocal of tan.
18. If tanθ=3/4, find secθ.
a) 5/4
b) 4/5
c) 3/5
d) 5/3
Answer: a) 5/4
Explanation:
sec2 θ=1+tan2 θ=1+9/16=25/16,
secθ=5/4.
19. Value of cos2 30∘+sin2 30∘:
a) 0
b) 1
c) 2
d) 3/2
Answer: b) 1
Explanation: Always = 1.
20. If sinθ=12/13, then cosθ=?
a) 5/13
b) 12/13
c) 13/5
d) None
Answer: a) 5/13
Explanation: By Pythagoras: cosθ=”√”(1-144/169)=5/13.
21. Value of tan60∘ :
a) √3
b) 1/√3
c) 1
d) 2
Answer: a) √3
Explanation: Standard value.
22. If secθ=2, then cosθ=?
a) 1/2
b) 2
c) √3/2
d) None
Answer: a) 1/2
Explanation: Reciprocal identity.
23. Value of sin0∘ :
a) 0
b) 1
c) 1/2
d) √3/2
Answer: a) 0
Explanation: Standard table.
24. If cotθ=1, then θ=?
a) 30°
b) 45°
c) 60°
d) 90°
Answer: b) 45°
Explanation: At 45°, cot = 1.
25. csc90∘=?
a) 0
b) 1
c) 2
d) ∞
Answer: b) 1
Explanation: cscθ=1/sinθ, so csc90∘=1.
26. If cosθ=4/5, find tanθ.
a) 3/4
b) 4/3
c) 5/4
d) 3/5
Answer: a) 3/4
Explanation:
sinθ=”√”(1-16/25)=3/5,
tanθ=(3/5)/(4/5)=3/4.
27. Value of sec2 θ-tan2 θ:
a) 0
b) 1
c) 2
d) Depends on θ
Answer: b) 1
Explanation: Identity: sec2 θ-tan2 θ=1.
28. If tanθ=5/12, then sinθ=?
a) 5/13
b) 12/13
c) 13/5
d) 5/12
Answer: a) 5/13
Explanation:
Right triangle: opposite = 5, adjacent = 12, hypotenuse = 13.
So sinθ=5/13.
29. Value of cos2 60∘+ sin2 60∘:
a) 0
b) 1
c) 2
d) 3/2
Answer: b) 1
Explanation: Always = 1 by identity.
30. tan0∘=?
a) 0
b) 1
c) ∞
d) Undefined
Answer: a) 0
Explanation: From table values.
31. If sinθ=8/17, then cosθ=?
a) 15/17
b) 17/15
c) 8/15
d) 9/17
Answer: a) 15/17
Explanation:
Hypotenuse = 17, opposite = 8, adjacent = 15 → cosθ=15/17.
32. Value of cot0∘ :
a) 0
b) 1
c) ∞
d) Undefined
Answer: c) ∞
Explanation: cot0∘=cos0∘/sin0∘=1/0.
33. If cosθ=12/13, then tanθ=?
a) 5/12
b) 12/5
c) 13/5
d) 5/13
Answer: a) 5/12
Explanation:
sinθ=5/13,
tanθ=(5/13)/(12/13)=5/12.
34. Value of sin2 45∘+cos2 45∘:
a) 0
b) 1
c) 2
d) √2
Answer: b) 1
Explanation: Identity.
35. If tanθ=7/24, then secθ=?
a) 24/25
b) 25/24
c) 7/25
d) 25/7
Answer: b) 25/24
Explanation:
Hypotenuse = √(7²+24²) = 25, adjacent = 24,
secθ=hypotenuse/adjacent=25/24.
36. Value of cos0∘ :
a) 1
b) 0
c) √3/2
d) 1/2
Answer: a) 1
Explanation: From trigonometric table.
37. If sinθ=40/41, then cosθ=?
a) 9/41
b) 40/41
c) 41/9
d) 1/41
Answer: a) 9/41
Explanation:
Hypotenuse = 41, opposite = 40, adjacent = 9 → cosθ=9/41.
38. Value of sin60∘ :
a) 1/2
b) √3/2
c) √3/3
d) 1
Answer: b) √3/2
Explanation: Standard value.
39. If cotθ=3/4, then sinθ=?
a) 4/5
b) 3/5
c) 5/4
d) None
Answer: a) 4/5
Explanation:
cotθ=adj/opp=3/4.
So opposite = 4, adjacent = 3, hypotenuse = 5 → sinθ=4/5.
40. Value of cos90∘ :
a) 1
b) 0
c) 1/2
d) √3/2
Answer: b) 0
Explanation: Standard value.
41. If sinθ=5/13, then cosθ=?
a) 12/13
b) 13/5
c) 5/12
d) 12/5
Answer: a) 12/13
Explanation: Pythagoras: cosθ=”√”(1-25/169)=12/13.
42. Value of sec45∘ :
a) 1/√2
b) √2
c) 1
d) √3
Answer: b) √2
Explanation: secθ=1/cosθ.
43. If tanθ=8/15, then sinθ=?
a) 8/15
b) 8/17
c) 15/17
d) 17/8
Answer: b) 8/17
Explanation:
Hypotenuse = √(8²+15²) = 17 → sinθ=8/17.
44. Value of sin0∘+cos0∘:
a) 1
b) 0
c) √2
d) 2
Answer: a) 1
Explanation: sin0°=0,cos0°=1. Sum = 1.
45. If cscθ=5/3, then sinθ=?
a) 3/5
b) 5/3
c) 4/5
d) 12/13
Answer: a) 3/5
Explanation: Reciprocal relation.
46. Value of tan90∘ :
a) 0
b) 1
c) ∞
d) Undefined
Answer: c) ∞
Explanation: At 90°, denominator becomes 0.
47. If sinθ=7/25, find cosθ.
a) 24/25
b) 25/24
c) 7/24
d) 1/25
Answer: a) 24/25
Explanation:
Opposite = 7, hypotenuse = 25 → adjacent = 24, so cosθ=24/25.
48. Value of tan2 θ+1:
a) sec2 θ
b) csc2 θ
c) sin2 θ
d) cos2 θ
Answer: a) sec2 θ
Explanation: Identity: 1+tan2 θ=sec2 θ.
49. If cosθ=5/13, then sinθ=?
a) 12/13
b) 5/12
c) 13/5
d) None
Answer: a) 12/13
Explanation: sinθ=”√”(1-25/169)=12/13.
50. Value of cot2 θ+1:
a) sec2 θ
b) csc2 θ
c) sin2 θ
d) cos2 θ
Answer: b) csc2 θ
Explanation: Identity: 1+cot2 θ=csc2 θ.
51. If sin2 θ=1/4, then cos2 θ=?
a) 1/2
b) 3/4
c) 1/4
d) 1
Answer: b) 3/4
Explanation: By identity sin2 θ+cos2 θ=1.
52. Value of sin30∘⋅cos60∘:
a) 1/4
b) 1/2
c) √3/4
d) 1
Answer: a) 1/4
Explanation: sin30°=1/2,cos60°=1/2→(1/2)(1/2)=1/4.
53. If tanθ=3/4, then cosθ=?
a) 3/5
b) 4/5
c) 5/4
d) 5/3
Answer: b) 4/5
Explanation: Right triangle: opp=3, adj=4, hyp=5 → cosθ=4/5.
54. Value of sin90∘-cos90∘:
a) 0
b) 1
c) -1
d) 2
Answer: b) 1
Explanation: sin90°=1,cos90°=0→1-0=1.
55. If cosA=12/13, find sinA.
a) 5/13
b) 13/5
c) 12/5
d) None
Answer: a) 5/13
Explanation: Using sin2 A+cos2 A=1.
56. Value of sin2Awhen sinA=3/5,cosA=4/5.
a) 24/25
b) 12/25
c) 15/25
d) 7/25
Answer: a) 24/25
Explanation: sin2A=2sinAcosA=2(3/5)(4/5)=24/25.
57. If tanθ=1, then θ = ?
a) 30°
b) 45°
c) 60°
d) 90°
Answer: b) 45°
Explanation: Standard value.
58. Value of cos2 30∘-sin2 30∘:
a) 0
b) √3/2
c) 1/2
d) 1
Answer: b) √3/2
Explanation: Identity: cos2 A-sin2 A=cos2A=cos60°=1/2.
Correction: compute directly: (“√” 3/2)2-(1/2)2=3/4-1/4=1/2.
So Answer: c) 1/2.
59. If sinθ=12/13, then tanθ=?
a) 12/5
b) 5/12
c) 13/5
d) 5/13
Answer: a) 12/5
Explanation: Opp=12, hyp=13 → adj=5. So tanθ = 12/5.
60. Value of sin2 60∘+cos2 30∘:
a) 1
b) 2
c) 3/2
d) √3
Answer: c) 3/2
Explanation: sin2 60°=3/4,cos2 30°=3/4,sum=3/2.
61. If cosθ=4/5, then secθ=?
a) 4/5
b) 5/4
c) 3/5
d) 5/3
Answer: b) 5/4
Explanation: Reciprocal relation.
62. Value of tan45∘+cot45∘:
a) 0
b) 1
c) 2
d) ∞
Answer: c) 2
tan45 = 1, cot45 = 1 → 1+1=2.
63. If tanθ=4/3, then cscθ=?
a) 5/3
b) 3/5
c) 5/4
d) 5
Answer: a) 5/3
Explanation: Opp=4, adj=3, hyp=5 → sinθ=4/5, so cscθ=5/4 (not 5/3).
Correction: cscθ=5/4.
So Answer: c) 5/4.
64. Value of sin2 θ-cos2 θ:
a) cos2θ
b) -cos2θ
c) -sin2θ
d) sin2θ
Answer: b) -cos2θ
Explanation: Identity: sin2 θ-cos2 θ=-cos2θ.
65. If cosA=0, then A = ?
a) 0°
b) 90°
c) 180°
d) 270°
Answer: b) 90°
Explanation: Cosine is 0 at 90°.
66. Value of sin18∘ :
a) 1/2
b) (√5 – 1)/4
c) (√5 + 1)/4
d) None
Answer: b) (√5 – 1)/4
Explanation: Exact trigonometric value.
67. If sinθ=24/25, then cotθ=?
a) 24/7
b) 7/24
c) 25/7
d) 7/25
Answer: b) 7/24
Explanation: Opp=24, hyp=25 → adj=7, so cotθ=adj/opp=7/24.
68. Value of cos45∘+sin45∘:
a) 1
b) √2
c) √2/2
d) 2
Answer: b) √2
Explanation: Each = √2/2, sum=√2.
69. If cosθ=5/12, then sinθ=?
a) 5/13
b) 12/13
c) 13/5
d) √(144/169)
Answer: b) 12/13
Explanation: Hyp=13, adj=12 → opp=5 → sinθ=5/13.
Correction: sinθ=√(1 – (25/144))?? Wait check:
Cosθ=5/12 is not correct ratio? Actually cos=adj/hyp, so assume adj=5, hyp=12 → opp=√(12²-5²)=√119.
So sinθ=√119/12. Not in options.
Maybe question intends cosθ=12/13. If so, sinθ=5/13.
So correct Answer: a) 5/13.
70. Value of sin15∘ :
a) (√3 – 1)/2√2
b) (√3 + 1)/2√2
c) √3/2
d) 1/2
Answer: a) (√3 – 1)/2√2
Explanation: Use formula sin(45°-30°).
71. If cotθ=2, then cscθ=?
a) √5
b) 2/√5
c) 1/√5
d) 5/2
Answer: a) √5
Explanation: cotθ=2 → adj/opp=2/1, hyp=√(2²+1²)=√5, sinθ=1/√5, cscθ=√5.
72. Value of tan30∘+tan60∘:
a) 2
b) √3
c) 4/√3
d) 3/√3
Answer: c) 4/√3
Explanation: tan30=1/√3, tan60=√3 → sum=(1/√3+√3)=(1+3)/√3=4/√3.
73. If sinθ=35/37, find cosθ.
a) 12/37
b) 35/37
c) 37/12
d) 1/37
Answer: a) 12/37
Explanation: Opp=35, hyp=37 → adj=12, cosθ=12/37.
74. Value of sin2θif cosθ=4/5.
a) 8/25
b) 24/25
c) 12/25
d) 9/25
Answer: b) 24/25
Explanation: sinθ=3/5, cosθ=4/5 → sin2θ=2(3/5)(4/5)=24/25.
75. Value of cos2 45∘+sin2 30∘:
a) 1
b) 5/4
c) 3/4
d) 1/2
Answer: b) 5/4
Explanation: cos²45 = 1/2, sin²30 = 1/4 → sum=3/4.
Correction: (1/2 + 1/4) = 3/4.
So Answer: c) 3/4.
76. Value of tan2 45∘+sin2 90∘:
a) 0
b) 1
c) 2
d) 3
Answer: c) 2
Explanation: tan2 45°=1,sin2 90°=1. Sum = 2.
77. If cosθ=7/25, then sinθ=?
a) 24/25
b) 7/24
c) 24/25
d) None
Answer: a) 24/25
Explanation: Hyp=25, adj=7 → opp=24 → sinθ=24/25.
78. Value of cos〖120^∘ 〗:
a) -1/2
b) 1/2
c) -√3/2
d) √3/2
Answer: a) -1/2
Explanation: Cosine in second quadrant is negative.
79. If tanθ=12/5, then secθ=?
a) 13/12
b) 13/5
c) 13/13
d) 5/13
Answer: a) 13/12
Explanation: Opp=12, adj=5, hyp=13 → secθ=hyp/adj=13/5.
Correction: secθ=13/5.
So Answer: b) 13/5.
80. Value of sin225∘ :
a) -√2/2
b) √2/2
c) -1
d) 0
Answer: a) -√2/2
Explanation: In 3rd quadrant sin is negative.
81. If sinθ=15/17, find cotθ.
a) 15/8
b) 8/15
c) 17/15
d) 15/17
Answer: b) 8/15
Explanation: Opp=15, hyp=17 → adj=8 → cotθ=8/15.
82. Value of cos270∘ :
a) 1
b) 0
c) -1
d) Undefined
Answer: b) 0
Explanation: From unit circle values.
83. If tanθ=5/12, find cscθ.
a) 12/13
b) 13/5
c) 13/12
d) 13/5
Answer: d) 13/5
Explanation: Opp=5, adj=12, hyp=13 → sinθ=5/13, so cscθ=13/5.
84. Value of sin360∘ :
a) 0
b) 1
c) -1
d) √3/2
Answer: a) 0
Explanation: Sine of 360° is same as sine of 0°.
85. If cosθ=40/41, find tanθ.
a) 9/40
b) 40/9
c) 41/9
d) 9/41
Answer: a) 9/40
Explanation: Hyp=41, adj=40 → opp=9 → tanθ=9/40.
86. Value of cos150∘ :
a) √3/2
b) -√3/2
c) -1/2
d) 1/2
Answer: c) -1/2
Explanation: 150° = 180°-30°, cos is negative → -cos30° = -√3/2.
Correction: cos150° = -√3/2.
So Answer: b) -√3/2.
87. If sinθ=21/29, find cosθ.
a) 20/29
b) 21/29
c) 29/21
d) 8/29
Answer: a) 20/29
Explanation: Opp=21, hyp=29 → adj=20 → cosθ=20/29.
88. Value of tan135∘ :
a) 1
b) -1
c) 0
d) Undefined
Answer: b) -1
Explanation: tan(135°)=tan(180°-45°)=-tan45°=-1.
89. If cotθ=7/24, then cosθ=?
a) 24/25
b) 7/25
c) 25/24
d) 25/7
Answer: a) 24/25
Explanation: cot=adj/opp=7/24 → opp=24, adj=7, hyp=25 → cosθ=7/25.
Correction: cosθ=adj/hyp=7/25.
So Answer: b) 7/25.
90. Value of sin300∘ :
a) √3/2
b) -√3/2
c) -1/2
d) 1/2
Answer: b) -√3/2
Explanation: 300° = 360°-60°, sin negative → -sin60°=-√3/2.
91. If tanθ=8/15, then cosθ=?
a) 8/17
b) 15/17
c) 17/15
d) 17/8
Answer: b) 15/17
Explanation: Opp=8, adj=15, hyp=17 → cosθ=15/17.
92. Value of cos225∘ :
a) √2/2
b) -√2/2
c) -1
d) 0
Answer: b) -√2/2
Explanation: In 3rd quadrant, cos is negative.
93. If sinθ=12/37, find cotθ.
a) 35/12
b) 12/35
c) 37/12
d) 5/12
Answer: a) 35/12
Explanation: Opp=12, hyp=37 → adj=35 → cotθ=35/12.
94. Value of tan270∘ :
a) 0
b) Undefined
c) ∞
d) 1
Answer: b) Undefined
Explanation: At 270°, cos=0, sin=-1 → tan=sin/cos=-1/0. Undefined.
95. If cosθ=9/41, then sinθ=?
a) 40/41
b) 9/41
c) 41/9
d) 32/41
Answer: a) 40/41
Explanation: Hyp=41, adj=9 → opp=40 → sinθ=40/41.
96. Value of sin120∘ :
a) √3/2
b) -√3/2
c) 1/2
d) -1/2
Answer: a) √3/2
Explanation: 120° = 180°-60°, sin positive → sin60°=√3/2.
97. If tanθ=7/24, then sinθ=?
a) 7/25
b) 24/25
c) 25/7
d) 25/24
Answer: a) 7/25
Explanation: Opp=7, adj=24, hyp=25 → sinθ=7/25.
98. Value of cos330∘ :
a) √3/2
b) -√3/2
c) 1/2
d) -1/2
Answer: a) √3/2
Explanation: 330°=360°-30°, cos positive → cos30°=√3/2.
99. If sinθ=20/29, then tanθ=?
a) 20/21
b) 21/20
c) 29/20
d) 29/21
Answer: a) 20/21
Explanation: Opp=20, hyp=29 → adj=21 → tanθ=20/21.
100. Value of sin270∘ :
a) 1
b) -1
c) 0
d) Undefined
Answer: b) -1
Explanation: Sine at 270° = -1.
